
Solving large structured games:
Ac4on-Graph Games and

generaliza4ons
Albert	Xin	Jiang	
Trinity	University	

	
(Based	on	joint	work	with	Kevin	Leyton-Brown	&	David	Thompson)	

EC	workshop	2016	

Why representa4ons ma=er

•  For	now	let’s	focus	on	simultaneous	move	games	
•  So	far:	represent	game	as	normal	form	(strategic	form),	then	solve	
using	Gambit	
•  For	n-player	m-acRon	game,	how	many	payoff	values	do	we	need	to	
store?	

•  For	large	mulRplayer	games,	just	storing	the	game	as	normal	form	
would	be	impracRcal	

Example: Coffee Shop Game

•  Each	player	need	to	decide	where	to	open	a	coffee	shop	
•  URlity	depends	on	locaRon,	and	level	of	compeRRon	nearby	
•  A	type	of	locaRon	game	[Hotelling	1929,	…]	

Structure in games

•  Fortunately	most	games	of	interest	in	are	structured	
• We	tend	to	define	these	games	using	a	few	sentences,	formulae	&	rules,	
instead	of	n-dimensional	table	
•  It	is	thus	possible	to	represent	the	game	compactly,	using	fewer	#	of	bits	than	
normal	form	
• We	want	compact	representaRons	that	are	computaRon-friendly,	such	that	
game-theoreRc	algorithms	scale	with	the	size	of	the	representaRon	

•  ExisRng	literature	on	various	compact	representaRons	
•  Either	only	for	special	classes	of	games,	e.g.	symmetric/anonymous	games,	
congesRon	games	[Rosenthal]	
•  Or	only	capture	a	subset	of	commonly-seen	structure,	e.g.	graphical	games	
[Kearns	et	al	01]	only	exploit	strict	independence	

Ac4on-Graph Game (AGG)

• A	compact	representaRon	for	complete	informaRon,	simultaneous-
move	games	[Leyton-Brown	&	Bhat	04,	Jiang	et	al	11]	
•  Can	represent	arbitrary	games	
•  ExponenRally	smaller	than	normal	form	when	games	exhibit	commonly-seen	
types	of	structure	
•  Generalize	and	unify	exisRng	compact	representaRons	including	graphical	games,	
symmetric	games…	

•  ExponenRal	speedup	over	normal	form	for	many	of	Gambit’s	solvers	
•  Now	integrated	as	part	of	Gambit	

Represen4ng Coffee Shop Game

•  Each	player	need	to	decide	where	to	open	a	coffee	shop	
•  URlity	depends	on	locaRon,	and	level	of	compeRRon	nearby	
•  Natural	to	model	the	domain	as	a	graph	over	possible	locaRons	

Defining AGG
• AcRon	Graph	
•  Nodes	are	acRons	

•  Each	agent	selects	an	acRon	
•  From	his	acRon	set:	a	subset	of	
acRon	nodes	
•  ConfiguraRon:	vector	of	acRon	
counts	

• URlity	for	selecRng	acRon	a	
•  FuncRon	of	the	configuraRon	of	
a’s	neighborhood	

Proper4es of AGG

• AGGs	can	represent	any	game	
• More	compact	than	the	normal	form	when	the	game	exhibits	at	least	
one	of	the	following	structure:	
•  Context-specific	independence	
•  Anonymity	

• RepresentaRon	size	is	O(m	nd),	polynomial	for	constant-degree	
graphs	
•  In	contrast,	normal	form	O(nmn)	space	

Coffee shop game revisited

• What	if	uRlity	depends	on	total	#	of	shops	
•  at	the	chosen	locaRon	
•  within	distance	1	of	the	chosen	locaRon	
•  further	away	

• AcRon	graph	has	in-degree	|A|	
•  NF	&Graphical	game:	size	O(|A|N)	
•  AGG:	O(N|A|)	
•  SRll	doesn’t	capture	game	structure	
•  Given	acRon	node,	its	payoff	only	depend	on	3	
things	

AGG-FNs: Func4on Nodes

•  Introduce	FuncRon	nodes	
•  The	“configuraRon”	of	a	funcRon	node	is	a	given	funcRon	of	configuraRon	of	
its	neighbors	

• Coffee	Shop	as	AGG-FN:	O(N^3)	

AGG File Format (details at agg.cs.ubc.ca)

•  #	of	players	
•  #	of	acRon	nodes	and	#	of	funcRon	nodes	
•  for	each	player,	#	of	acRons	and	which	acRon	nodes	they	are	
•  the	acRon	graph,	as	neighbor	lists	
•  types	of	funcRon	nodes	
•  for	each	acRon	node,	uRlity	funcRon:	mapping	from	configuraRon	to	
uRlity	value,	e.g.	
•  [1	0]	2.5		
[1	1]	-1.2	

• Without	loss	of	compactness,	AGGs	can	encode	
•  Graphical	games	
•  Symmetric	games	

• Another	extension:	addiRve	structure	(AGG-FNA)	
•  Enables	compact	encoding	of	

•  CongesRon	Games	
•  Polymatrix	games	
•  &	others..	

Equilibrium Computa4on for AGGs

• Want	algorithms	that	scale	with	the	size	of	the	AGG		

•  Key	subproblem:	compuRng	expected	uRlity	

	
•  Polynomial-Rme	algorithm	

•  ExploiRng	locality:	project	to	neighborhood	of	acRon	
•  ExploiRng	anonymity:	compute	prob	of	configuraRon	

•  Dynamic	programming	

•  ExponenRally	speed	up	exisRng	Nash	Eq	algorithms		
•  Most	Gambit	solvers,	including	

•  gnm[Govindan&Wilson	‘03],	simpdiv[van	der	Laan	et	al	‘87],	QRE	tracing	[Turocy]	
•  And	any	other	algorithms	that	use	expected	uRlity	

AGG SoNware & Applica4ons

•  AGG	now	integrated	into	GAMBIT	(gambit-project.org)	
•  Reads	in	AGG	file	format	
•  Solve	AGG,	visualize/analyze	results	

•  Instance	generators,	GUI	(agg.cs.ubc.ca)	
•  Positronic	Economist	(github.com/davidrmthompson/positronic-economist)	

•  Modeling	language	built	on	top	of	AGG	

•  ApplicaRons	
•  ad	aucRons	[Thompson&Leyton-Brown	2009]	
•  strategic	voRng	[Thompson	et	al	2013]	
•  wireless	spectrum	allocaRon	[Wu&Kuo,	2012]	

Bayesian Games

•  It's	desirable	to	work	with	Bayesian	games	as	well	as	with	complete-
informaRon	games	
•  Previously	no	general	representaRons	or	algorithms	targeRng	Bayes-Nash	
equililbrium	

•  This	leaves	two	general	approaches,	both	of	which	make	use	of	complete-
informaRon	Nash	algorithms:	
•  induced	normal	form	

•  one	acRon	for	each	pure	strategy	(mapping	from	type	to	acRon)	
•  set	of	players	unchanged	

•  agent	form	
•  one	player	for	each	type	of	each	of	the	BG's	players	
•  acRon	space	unchanged	

Bayesian AGGs [Jiang&Leyton-Brown 10]

•  Idea:	construct	an	AGG-like	representaRon	of	the	Bayesian	game's	
uRlity	funcRons,	which	can	then	compactly	encode	its	agent	form.	
•  Bayesian	network	for	the	joint	type	distribuRon	
•  A	(potenRally	separate)	acRon	graph	for	each	type	of	each	agent	
•  uRlity	funcRon	on	each	node,	as	defined	in	AGG:	funcRon	of	configuraRon	of	
neighboring	nodes	
•  uRlity	thus	depends	on	which	types	are	realized	and	on	the	acRons	taken	by	the	other	
agents	of	the	appropriate	types	

• BAGG	file:	similar	to	AGG,	with	addiRonal	specificaRon	of	types	and	
type	distribuRons	

BAGG results

•  Representa)onal	compactness:	
•  RepresentaRon	size	grows	polynomially	in	#	of	players,	types	and	acRons,	when	
acRon	graph	has	constant-bounded	in-degree	

•  ExponenRal	savings	over	an	unstructured	Bayesian	game	
•  Computa)onal	tractability:	

•  When	types	are	independent,	expected	uRlity	can	be	computed	in	Rme	polynomial	
in	the	size	of	the	BAGG.	

•  When	types	are	not	independent,	expected	uRlity	can	sRll	be	computed	in	
polynomial	Rme	when	an	induced	Bayesian	network	has	bounded	treewidth.	

•  With	the	speeded	up	EU,	can	solve	NE	of	the	agent	form	using	Gambit	solvers,	which	
yields	BNE	of	the	Bayesian	game	

•  Integrated	as	part	of	Gambit:	reads	in	BAGG	file	format,	solver	outputs	NE	of	agent	
form	

Compu4ng BNE with GNM algorithm [Govindan&Wilson]

Example: Patrolling in a subway system

•  Defender	vs	fare	evader	
•  Defender	commits	to	a	(randomized)	daily	patrol	schedule	
•  MulRple	units,	each	unit	choose	a	sequence	of	(locaRon,Rme)	

Games with structured strategy spaces

•  Each	player	may	need	to	make	a	complex	decision	with	mulRple	components	
•  E.g.	bid	simultaneously	in	mulRple	aucRons;	rank	a	set	of	opRons;	choose	a	path	in	a	
network;	controlling	a	team	of	agents;	choose	a	conRngency	plan	with	mulRple	scenarios	

•  ExponenRal	#	of	possible	pure	strategies;	though	the	set	of	pure	strategies	admit	a	short	
descripRon	

•  Many	exisRng	representaRons	and	algorithms	rely	on	explicitly	enumeraRng	pure	strategies	

•  Single-agent	version	well	studied	in	combinatorial	opRmizaRon	and	AI	
•  Special	classes	of	games	studied:	network	congesRon	games,	simultaneous	
aucRons,	security	games,	dueling	algorithms	[IKLMPT	11],	Bayesian	games	
[Harsnanyi	67]	
•  Lack	of	general	representaRon	&	computaRonal	framework	

Resource Graph Games

•  A	generalizaRon	of	AGGs	to	represenRng	structured	strategy	spaces	
•  Idea:	allow	each	player	to	choose	more	than	one	node	in	the	resource	graph	
•  Each	pure	strategy	a	subset,	represented	by	0-1	vector	
•  Each	player’s	set	of	pure	strategies	are	integer	points	in	a	polytope	

•  represented	using	linear	constraints	
•  URlity	funcRons	for	each	node,	as	in	AGG	(funcRon	of	configuraRon	of	neighbors)	
•  A	player’s	uRlity	is	the	sum	of	uRlity	contribuRons	from	each	node	chosen	by	the	player	

•  ComputaRon	
•  Need	to	compactly	represent	mixed	strategies	
•  Can	use	marginal	strategies	(expected	point	in	the	polytope),	if	uRliRes	are	mulRlinear	
•  Key	task:	compuRng	uRlity	gradient	
•  Algorithm	for	compuRng	coarse	correlated	equilibrium	
•  Many	open	quesRons	on	adapRng	exisRng	(or	designing	new)	algorithms	

•  Preliminary	implementaRon,	not	yet	in	Gambit	

Summary

•  For	large	games,	we	need	compact	representaRons	
•  AcRon-Graph	Games	for	complete-informaRon	games	
•  Bayesian	AGGs	for	incomplete-informaRon	games	
•  Now	part	of	Gambit:	can	read	&	solve	AGGs/BAGGs	

•  Current/future	work:		
•  Other	algorithms	

•  Eg.	exploiRng	graph	properRes	(treewidth;	message-passing)	
•  Finding	all	equilibria	/	extremal	equilibria;	support	enumeraRon	

•  Other	soluRon	concepts:		
•  correlated	equilibrium	[Papadimitriou&Roughgarden08]	
•  Stackelberg	equilibrium	

•  RepresenRng	dynamic	games:	MAIDs,	Temporal	AGG	
•  Higher-level	language:	e.g.	positronic	economist	[Thompson16]	
•  Scaling	up	strategy	space:	RGGs,	algorithms	
•  Learning	from	data	

Compu4ng expected u4lity: projec4on

Compu4ng expected u4lity: Anonymity

• Auer	projecRon,	sRll	exponenRal,	but	exponenRally	smaller	
• Write	EU	in	terms	of	configuraRons	

Dynamic programming for

• Base	case:	zero	agents	and	its	resulRng	configuraRon	
•  c0=(0,…0)	
•  P0(c0)	=	1	

•  Then	add	agents	one	by	one	

Other algorithms

•  Treewidth-based	dynamic	programming	algorithms	for	
•  Pure	strategy	NE	[Jiang	&	Leyton-Brown,2007]	
•  Approximate	mixed	strategy	NE	[Daskalakis	et	al,	2009]	

•  Support	enumeraRon	method	for	compuRng	Nash	in	AGGs	
[Thompson	et	al	2009]	

