Game Theory Explorer Software for the Applied Game Theorist

Rahul Savani

University of Liverpool

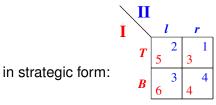
Bernhard von Stengel

London School of Economics

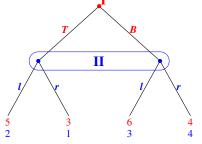
May 2016

Overview

Explain and demonstrate GTE (Game Theory Explorer), open-source software, under development, for creating and analyzing non-cooperative games



and extensive form:



Purpose Usage Client/Server Algorithms Future

Intended users

Applied game theorists:

- experimental economists (analyze game before running experiment)
- game-theoretic modelers in biology, political science, . . .
- in general: non-experts in equilibrium analysis
- ⇒ design goal: ease of use

Researchers in game theory:

- testing conjectures about equilibria
- as contributors: designers of game theory algorithms

Educators:

interactive tool to explain solution concepts and algorithms

Purpose Usage Client/Server Algorithms Future

History: Gambit

GTE now part of the **Gambit** open-source software development, http://www.gambit-project.org

2011, 2012, 2014, and 2016 supported by Google Summer of Code (GSoC)

Gambit software started ~1990 with **Richard McKelvey** (Caltech) to analyze games for **experiments**, developed since 1994 with **Andy McLennan** into C++ package, since 2001 maintained by **Ted Turocy** (UEA, Norwich, UK).

- Gambit must be installed on PC/Mac/Linux, with GUI (graphical user interface) using platform-independent wxWidgets
- has collection of algorithms for computing Nash equilibria
- offers scripting language, now developed using Python

Features of GTE

GTE independent browser-based development:

- no software installation needed, low barrier to entry
- nicer GUI than Gambit
- export to graphical formats

Features of GTE

GTE independent browser-based development:

- no software installation needed, low barrier to entry
- nicer GUI than Gambit
- export to graphical formats

Disadvantages:

- manual storing / loading of files for security reasons
- long computations require local server installation (same GUI)

Features of GTE

GTE independent browser-based development:

- no software installation needed, low barrier to entry
- nicer GUI than Gambit
- export to graphical formats

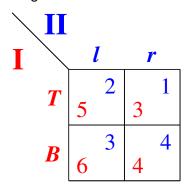
Disadvantages:

- manual storing / loading of files for security reasons
- long computations require local server installation (same GUI)

Other Contributors: David Avis (Irs), Mark Egesdal (2011), Alfonso Gomez-Jordana, Martin Prause, Christian Pelissier (GSoC 2011, 2012, 2014), Cesar de la Vega (2015), Harkirat Singh, Jaume Vives, Amelie Heliou (GSoC 2016)

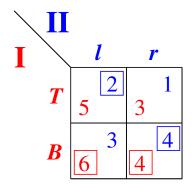
Example of a game

 $\mathbf{2} \times \mathbf{2}$ game in strategic form:



Example of a game

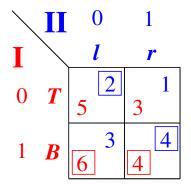
 $\mathbf{2} \times \mathbf{2}$ game in strategic form:



with pure best responses

Example of a game

 $\mathbf{2} \times \mathbf{2}$ game in strategic form:

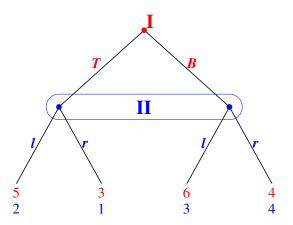


with pure best responses and equilibrium probabilities

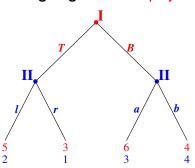
Extensive (= tree) form of the game

Players move sequentially,

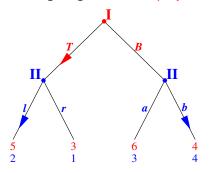
information sets show **lack of information** about game state:



Changed game when player I can commit:

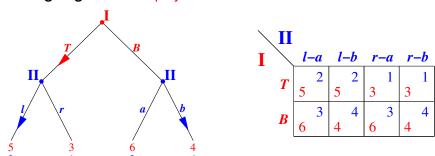


Changed game when player I can commit:



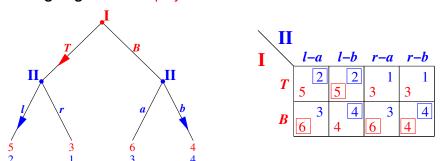
Subgame perfect equilibrium: (T, I-b)

Changed game when player I can commit:



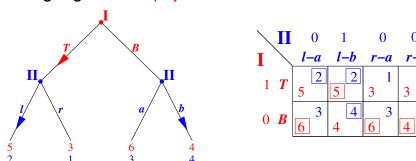
Subgame perfect equilibrium: (T, I-b)

Changed game when player I can commit:



Subgame perfect equilibrium: (T, I-b)

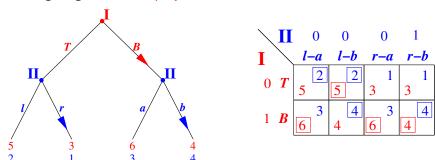
Changed game when player I can commit:



Subgame perfect equilibrium: (T, I-b)

4

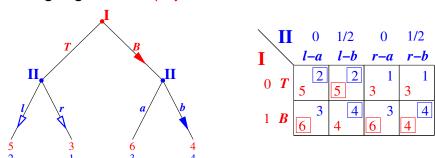
Changed game when player I can commit:



Subgame perfect equilibrium: (T, I-b)

Other equilibria: (B, r-b)

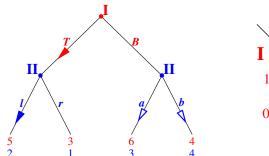
Changed game when player I can commit:

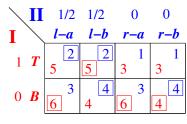


Subgame perfect equilibrium: (T, I-b)

Other equilibria: (B, r-b), $(B, \frac{1}{2}I-b)$

Changed game when player I can commit:





Subgame perfect equilibrium: (T, I-b)

Other equilibria: (B, r-b), $(B, \frac{1}{2}l-b, \frac{1}{2}r-b)$, $(T, \frac{1}{2}l-a, \frac{1}{2}l-b)$

GTE output for the commitment game

```
      2 x 4 Payoff player 1
      2 x 4 Payoff player 2

      1-a 1-b r-a r-b
      1-a 1-b r-a r-b

      T 5 5 3 3
      T 2 2 1 1

      B 6 4 6 4
      B 3 4 3 4
```

EE = Extreme Equilibrium, EP = Expected Payoffs

```
Rational:
```

```
EE 1 P1: (1) 0 1 EP= 4 P2: (1) 0 1/2 0 1/2 EP= 4 EE 2 P1: (1) 0 1 EP= 4 P2: (2) 0 0 0 1 EP= 4 EE 3 P1: (2) 1 0 EP= 5 P2: (3) 0 1 0 0 EP= 2 EE 4 P1: (2) 1 0 EP= 5 P2: (4) 1/2 1/2 0 0 EP= 2
```

```
Connected component 1: {1} x {1. 2}
```

```
Connected component 2:
```

 $\{2\}$ x $\{3, 4\}$

Demonstration of GTE

Preceding games:

- 2 × 2 game in strategic form
- extensive form of that game
- commitment game, extensive and strategic form

Demonstration of GTE

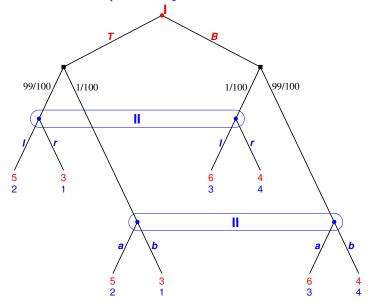
Preceding games:

- 2 × 2 game in strategic form
- extensive form of that game
- commitment game, extensive and strategic form

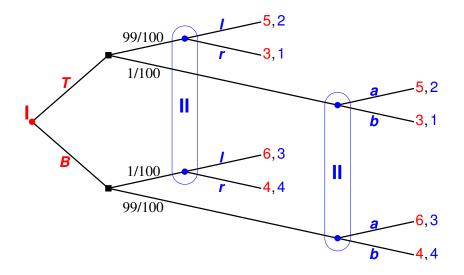
Next: create from scratch a more complicated extensive game

• imperfectly observable commitment

Game with imperfectly observable commitment



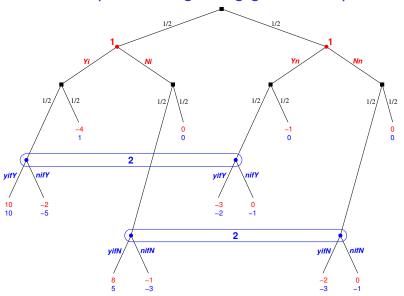
Game tree drawn left to right



GTE output for imperfectly observable commitment

```
2 x 4 Payoff player 1
                              2 x 4 Payoff player 2
 1-a 1-b
                                       1-b r-a r-b
               r-a r-b
   5 249/50 151/50
                              T 2 199/100 101/100
B 6 201/50 299/50
                                  3 399/100 301/100
EE = Extreme Equilibrium, EP = Expected Payoffs
Decimal:
EE 1 P1: (1) 0.01 0.99 EP= 4.0102 P2: (1)
                                            0 0.5102 0 0.4898 EP= 3.97
EE 2 P1: (2) 0 1.0 EP=
                            4.0 P2: (2)
                                                   0 0
                                                          1.0 EP= 4.0
FF 3 P1: (3) 0.99 0.01 EP= 4.9898 P2: (3) 0.4898 0.5102 0
                                                           0 FP= 2.01
Connected component 1:
\{1\} x \{1\}
Connected component 2:
{2} x {2}
Connected component 3:
\{3\} \times \{3\}
```

More complicated signaling game, 5 equilibria



Some more strategic-form games

For studying more complicated games:

generate game matrices as text files, copy and paste into strategic-form input.

Future extension:

Automatic generation via command lines or "worksheets" for scripting, connection with Python and Gambit

GTE software architecture

Client (your computer with a browser):

- GUI: JavaScript (Flash's variant called ActionScript)
- store and load game described in XML format
- export to graphic formats (.png or XFIG → EPS, PDF)
- for algorithm: send XML game description to server

GTE software architecture

Client (your computer with a browser):

- GUI: JavaScript (Flash's variant called ActionScript)
- store and load game described in XML format
- export to graphic formats (.png or XFIG → EPS, PDF)
- for algorithm: send XML game description to server

Server (hosting client program and equilibrium solvers):

- converts XML to Java data structure (similar to GUI)
- solution algorithms as binaries (e.g. C program Irs), send results as text back to client

High usage of computation resources

Finding all equilibria takes exponential time

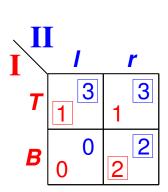
- ⇒ for large games, server should run on your computer, not a public one
 - achieved by local server installation ("Jetty"), requires installation, but offers same user interface.

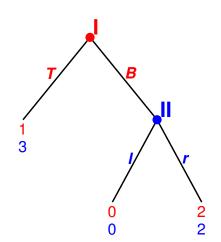
Algorithm: Finding all equilibria

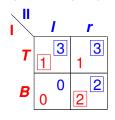
For two-player games in strategic form, all Nash equilibria can be found as follows:

- payoffs define inequalities for "best response polyhedra"
- compute all vertices of these polyhedra (using Irs by David Avis, requires arbitrary precision integers)
- match vertices for **complementarity** (LCP)
- find maximal cliques of matching vertices for equilibrium components

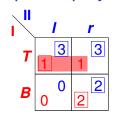
Example



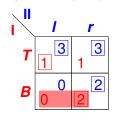




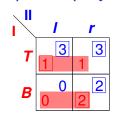
payoff player I prob(r)

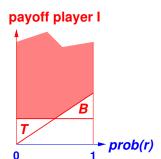


payoff player I T prob(r)

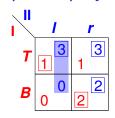


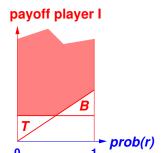
payoff player I



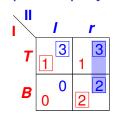


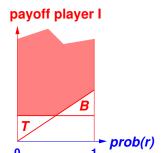
Best response polyhedron of player II



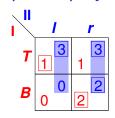


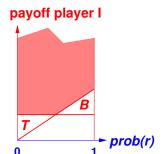
Best response polyhedron of player II

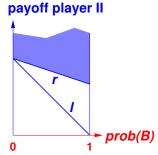




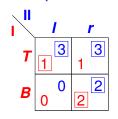
Best response polyhedron of player II

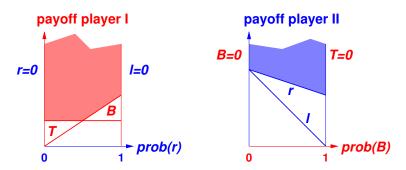




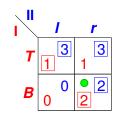


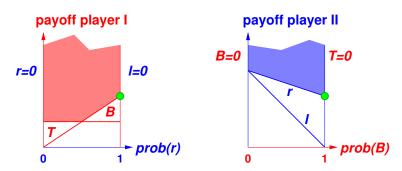
Label with best responses and unplayed strategies



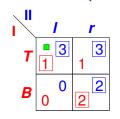


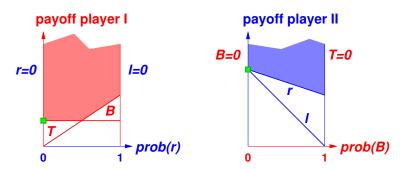
Equilibrium = **all** labels **T**, **B**, **I**, **r** present



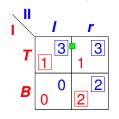


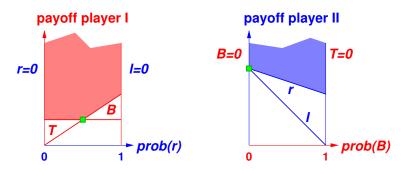
Equilibrium with multiple label *r* (degeneracy)



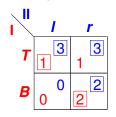


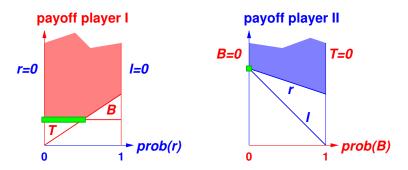
Equilibrium with multiple label **B** (degeneracy)





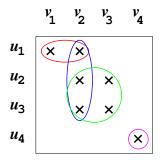
\Rightarrow equilibrium component with labels **T** and **B**, **I**, **r**

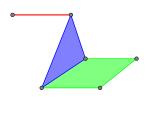




Equilibrium components via cliques

In degenerate games (= vertices with zero basic variables, occur for game trees), get convex combinations of "exchangeable" equilibria. Recognized as **cliques** of matching vertex pairs:

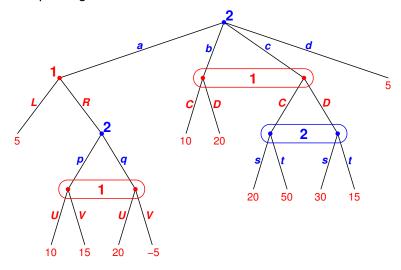




geometry

Algorithm: Sequence form for game trees

Example of game tree:



Exponentially large strategic form

Strategy of a player:

specifies a move for every information set of that player (except for unspecified moves * at unreachable information sets)

⇒ **exponential** number of strategies

L*C L*D RUC RUD RVC RVD

ар*	aq*	b **	C*S	c *t	d **
5	5	10	20	50	5
5	5	20	30	15	5
10	20	10	20	50	5
10	20	20	30	15	5
15	- 5	10	20	50	5
15	- 5	20	30	15	5

Sequences instead of strategies

Sequence specifies moves only along path in game tree

⇒ linear number of sequences, sparse payoff matrix A

	Ø	a	b	C	d	ap	aq	cs	ct
Ø					5				
L		5							
R									
RU						10	20		
RV						15	- 5		
C			10					20	50
D			20					30	15

Expected payoff $\mathbf{x}^{\top} A \mathbf{y}$, play rows with $\mathbf{x} \geq \mathbf{0}$ subject to $\mathbf{E} \mathbf{x} = \mathbf{e}$, play columns with $\mathbf{y} \geq \mathbf{0}$ subject to $\mathbf{F} \mathbf{y} = \mathbf{f}$.

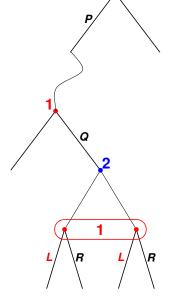
Play as behavior strategy

Given: $\mathbf{x} > \mathbf{0}$ with $\mathbf{E}\mathbf{x} = \mathbf{e}$.

Move L is last move of **unique** sequence, say PQL, where one row of Ex = e says

$$X_{POL} + X_{POR} = X_{PO}$$

$$\Rightarrow \text{ behavior-probability}(L) = \frac{x_{PQL}}{x_{PQ}}$$



Play as behavior strategy

Given: $\mathbf{x} > \mathbf{0}$ with $\mathbf{E}\mathbf{x} = \mathbf{e}$.

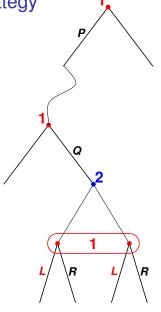
Move L is last move of **unique** sequence, say PQL, where one row of Ex = e says

$$X_{PQL} + X_{PQR} = X_{PQ}$$

$$\Rightarrow$$
 behavior-probability(L) = $\frac{X_{PQL}}{X_{PQ}}$

Required assumption of **perfect recall** [Kuhn 1953, Selten 1975]:

Each node in an information set is preceded by same sequence, here *PQ*, of the player's **own** earlier moves.



Linear-sized sequence form

Input: Two-person game tree with perfect recall.

Theorem [Romanovskii 1962, von Stengel 1996]

The equilibria of a **zero-sum** game are the solutions to a Linear Program (LP) of **linear** size in the size of the game tree.

Linear-sized sequence form

Input: Two-person game tree with perfect recall.

Theorem [Romanovskii 1962, von Stengel 1996]

The equilibria of a **zero-sum** game are the solutions to a Linear Program (LP) of **linear** size in the size of the game tree.

Theorem [Koller/Megiddo/von Stengel 1996, von Stengel/Elzen/Talman 2002]

The equilibria of a **non-zero-sum** game are the solutions to a Linear Complementarity Problem (LCP) of linear size.

A sample equilibrium is found by **Lemke's algorithm**.

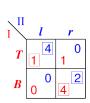
This algorithm mimicks the Harsanyi–Selten tracing procedure and finds a normal-form perfect equilibrium.

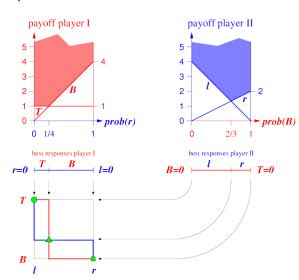
Google Summer of Code 2016

Three GSoC students currently working on:

- Improve and convert GUI to pure JavaScript
- Advanced game tree layout e.g. drawing information sets in games without time structure
- Educational features (example next)

Example of educational feature





Planned Extensions

Further solution algorithms:

- **EEE** [Audet/Hansen/Jaumard/Savard 2001]
- Path-following algorithms (Lemke-Howson, variants of Lemke)
- *n*-player games: simplicial subdivision, polynomial inequalities

Scripting features:

- connect with Gambit and Python
- database of reproducible computational experiments

Educational features:

teaching algorithms interactively

Summary

GTE - Game theory explorer

- helps create, draw, and analyze game-theoretic models
- user-friendly, browser-based, low barriers to entry
- open-source, work in progress, welcomes contributors

```
https://github.com/gambitproject/gte/
https://github.com/gambitproject/jsgte/
```

Rahul Savani and Bernhard von Stengel (2016)

Game Theory Explorer – Software for the Applied Game Theorist

Computational Management Science 12, 5-33.